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Decidability in Orthomodular Lattices

Marek Hyčko1 and Mirko Navara2,3

We discuss the possibility of automatic simplification of formulas in orthomodular
lattices. We describe the principles of a program which decides the validity of equalities
and inequalities, as well as implications between them and other important relations
significant in quantum mechanics.
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1. MOTIVATION

Orthomodular lattices (OMLs) have been introduced in the early works by
Birkhoff and von Neumann (1936) as a mathematical structure allowing to describe
events in a quantum mechanical system (Gudder, 1988). OMLs are not distributive
in general. This causes problems with evaluation of more complex expressions,
because these cannot be transformed to a unique normal form. Therefore there are
even doubts about the solvability of the word problem in orthomodular lattices
(Herrmann, 1987; Kalmbach, 1986). As a substitute for distributivity, several
tools were designed, e.g., the Foulis–Holland theorem (Foulis, 1962; Holland,
1963). Among them, the focusing technique due to Greechie (1977) seems to
be the most general. It was used in most of algebraic results in OMLs (Gudder,
1988; Kalmbach, 1983). It allows to use distributivity under some restrictions;
in particular, it cannot be applied to expressions containing a variable and its
orthocomplement. An alternative tool has been proposed in Navara (1997). It uses
the fact that the free orthomodular lattice with two free generators is finite. Thus all
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OML formulas in two variables can be expressed in a unique way. This procedure
has been implemented by Megill and Pavičić (2001) and later by one of the authors
(Hyčko, 1987). Here we describe an improved computer program for this purpose
which allows not only to decide the validity of equalities and inequalities and
also formulas composed from them by the use of (classical) logical connectives.
We clarify its principles and also limitations of this technique. We compare it to
focusing.

2. BASIC NOTIONS AND CURRENT STATE

An orthomodular lattice is an algebra (L,∧,∨, ′, 0, 1) of type (2, 2, 1, 0, 0)
such that (L,∧,∨, 0, 1) is a bounded lattice, ′ (orthocomplementation) is its
antiisomorphism and the following identities hold for all a, b ∈ L: a ∧ a′ = 0,
a ∨ b = a ∨ (

a′ ∧ (a ∨ b)
)

(the latter identity is called the orthomodular law; see
Beran (1984); Kalmbach (1983) for its equivalent formulations). Orthomodular
lattices form an algebraic basis for the description of event structures of quantum
mechanical systems. For basics about orthomodular lattices, we refer to Beran
(1984); Gudder (1988); Kalmbach (1983). Throughout this paper, L denotes an
OML (we use this abbreviated notation instead of (L,∧,∨, ′, 0, 1)).

We distinguish a sublattice of an OML, which is a subset closed under the
join and meet, and a sub-orthomodular lattice (sub-OML) which is closed under
the join, meet, and orthocomplementation. A sub-OML which is a Boolean algebra
(with the operations inherited from the OML) is called a Boolean subalgebra of
an OML. Two elements a, b of an OML commute (are compatible), in symbols
aCb, if they are contained in a Boolean subalgebra. There are many equivalent
formulations of this property, e.g., the equalities a = (a ∧ b) ∨ (a ∧ b′) or c =
1, where c = (a ∧ b) ∨ (a ∧ b′) ∨ (a′ ∧ b) ∨ (a′ ∧ b′) is the lower commutator
of a, b. An element of an OML is called central if it commutes with all other
elements. The set of all central elements of an OML L is called the center of
L and is denoted by C(L). For elements a, b ∈ L such that a ≤ b we define the
interval [a, b] = {x ∈ L | a ≤ x ≤ b}.

The modular ortholattice MO2 is the OML {0, 1, x, y, x ′, y ′} whose elements
satisfy u ∧ v = 0, u ∨ v = 1 for all u ∈ {x, x ′}, v ∈ {y, y ′}. Its center is {0, 1}.

The Greechie focusing technique (Greechie, 1977, 1979) can be reformulated
as follows:

Theorem 2.1. Let L be an OML and ai, bi ∈ L (i = 1, . . . , n) be elements such
that

∀x, y ∈ {ai, bi | i = 1, . . . , n} : (xCy unless {x, y} = {ai, bi} for some i) .

Then the sublattice of L generated by {ai, bi | i = 1, . . . , n} is distributive.
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As a corollary, we may use distributivity for any lattice polynomial in vari-
ables ai, bi (i = 1, . . . , n), but the use of orthocomplementation has to be avoided.
As the commutation is preserved by taking orthocomplements, focusing can be
generalized to the case when some of the variables ai, bi (i = 1, . . . , n) are re-
placed by their complements. However, it is not allowed to combine a variable
and its orthocomplement during one application of focusing.

The approach of Navara (1997) is based on the use of the free orthomodular
lattice with two free generators a, b, denoted by F(a, b).

Proposition 2.1. (Beran, 1984; Kalmbach, 1983) The free OML F(a, b) with
two free generators a, b is isomorphic to the product of the Boolean algebra
24 ∼= [0, c] (with atoms a ∧ b, a ∧ b′, a′ ∧ b, a′ ∧ b′) and the modular ortholattice
MO2 ∼= [0, c] (with atoms a ∧ c′, a′ ∧ c′, b ∧ c′, b′ ∧ c′), where c is the lower
commutator of a, b; the corresponding isomorphism is h: x 	→ (x ∧ c, x ∧ c′).
The OML F(a, b) has 24 × 6 = 96 elements, including eight atoms (listed above).
Its center is the Boolean algebra with five atoms a ∧ b, a ∧ b′, a′ ∧ b, a′ ∧ b′, c′.
An element x ∈ F(a, b) is central if and only if x ∧ c′ ∈ {0, c′}, i.e., the MO2 part
of x is not an atom.

The complete list of the elements of F(a, b) is presented in Beran (1984)
together with their unique codes (called Beran’s numbers in Megill and Pavičić,
2001, and subsequent papers).4 Any formula composed of the elements of F(a, b)
is equivalent to a unique element of F(a, b); as this OML is finite, the whole
computation can be made automatically, e.g., by the use of a computer program. In
Navara (1997), a graphical representation of the elements of F(a, b) was suggested;
it allows to memorize these elements and also simplifies the operations, performing
them independently on the Boolean factor and on the MO2 factor. Later on, Megill
implemented this idea in a computer program5 which, given a formula in two
variables, returns the Beran’s number of the corresponding element of F(a, b).
This program was presented in Megill and Pavičić (2001) and extensively used
in Megill and Pavičić (2003a,b) and other papers. As the authors paid special
attention to quantum implications, they adapted the program particularly for testing
hypotheses about implications. For instance, they included operators that might be
substituted by any quantum implication. Using this tool, they have found formulas
which have a given meaning independently of the choice of the implication. Such
results could be hardly obtained without computer support.

Recently a new implementation of the method of Navara (1997) has been
done in Hyčko (1987). Besides the Beran’s numbers, its output contains also the
graphical representation according to Navara (1997) and the corresponding TEX

4 The table of Beran’s numbers can be found at http://cmp.felk.cvut.cz/∼navara/FOML/.
5 http://us.metamath.org/downloads/quantum-logic.tar.gz.
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macro for its typesetting.6 It is not limited to simplification of formulas and testing
equalities. It allows to answer more complicated questions as we shall describe
in the sequel. Besides, it admits to introduce further variables, provided that they
commute with all other variables. This covers many algebraic results found in
the literature and allows to verify them by a simple question to the program. Here
we present its updated version and simplified proofs of its principle. Then we
compare its power to that of the focusing technique.

2.1. Congruences and Ideals in OMLs

Let us recall some basic properties of finite orthomodular lattices, with special
attention to the free OML F(a, b) with two free generators. We use the notation
and results from Navara (1997).

Definition 2.3. A congruence in an OML L is an equivalence relation ψ ⊆ L2

preserving the operations ∧, ∨, ′ ( thus also 0, 1). Its kernel is ker ψ = {x ∈ L |
(x, 0) ∈ ψ}.

The set of all congruences of an OML L with the ordering by inclusion forms
a complete distributive lattice denoted here by Con(L). Each congruence can be
uniquely determined by its kernel (Birkhoff, 1973; Kalmbach, 1983). Kernels of
congruences in OMLs are particular ideals called p-ideals. In finite OMLs this
notion may be simplified as follows (see Dorfer, 2001, Proposition 2.6; Kalmbach,
1983):

Proposition 2.4. Let L be a finite OML and ψ be a congruence on L. Then the
kernel of ψ has a greatest element, denoted by wψ (thus ker ψ = [0, wψ ] is a
principal ideal); moreover, wψ is central.

Proposition 2.5. (Kalmbach, 1983, Section 6, Theorem 10) Let L be a finite
OML. The mapping which maps each congruence ψ onto wψ is an isomorphism
of Con(L) and C(L).

3. PRINCIPLES OF IMPLEMENTATION

3.1. Canonical Forms and Tests of Identities

Every formula in the language of OMLs containing two variables (without
loss of generality, a, b) can be associated to a unique element of the free OML
F(a, b). (From now on, we identify formulas in a, b with the corresponding ele-
ments of F(a, b).) This allows to simplify such formulas to a canonical form. The

6 The style file can be downloaded from ftp://math.feld.cvut.cz/pub/navara/foml2.sty.
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program described here7 expresses the elements of F(a, b) as joins of atoms. The
finiteness of the OML F(a, b) allowed to implement all basic OML operations
on F(a, b) and perform them automatically. (For the convenience of the user, all
possible binary OML operations are implemented in our program.)

Once we have a (semantically) unique representation of all formulas in two
variables, we can easily compare them (test identities) by just comparing the
canonical forms. Also some relations on OMLs may be expressed as identities,
e.g., the ordering,

a ≤ b iff a = a ∧ b,

and commutation,

a C b iff a = (a ∧ b) ∨ (a ∧ b′).

These relations are implemented in the program.
Let I be an identity of the form x = y, where x, y ∈ F(a, b) are formulas in

variables a, b. Without loss of generality, I can be transformed to an equivalent
identity of the form u = 0. There may be more elements u ∈ F(a, b) with this
property; one of them is d(x, y) = (x ∨ y) ∧ (x ′ ∨ y ′). (The operation d is one of
possible symmetric differences in OMLs, see Dorfer et al., 1996; the corresponding
Beran’s number is 89.) The identity I holds in F(a, b) (and hence in all OMLs) iff
d(x, y) = 0. This can be easily checked by a program.

3.2. Congruences and Identities Satisfied in Quotient Algebras

Let I be an identity of the form x = y, where x, y ∈ F(a, b). If d(x, y) �= 0,
then I does not always hold. Besides the negative answer to its verification in
general, we may also specify the “domain” of validity of I . This can be expressed
in the terms of the least congruence such that I holds in the respective quotient
algebra. We shall need the following fact:

Proposition 3.1. (Kalmbach, 1983, Section 6, Theorem 6) Let L be an OML, ψ

be a congruence on L, and s, t ∈ L. Then

(s, t) ∈ ψ iff (s ∨ t) ∧ (s ′ ∨ t ′) ∈ ker ψ.

Proposition 3.2. Let I be an identity of the form x = y, x, y ∈ F(a, b). Then
there exists the least congruence on F(a, b), denoted by ϕI , such that I holds in the
quotient algebra F(a, b)/ϕI . Moreover, ker ϕI = [0, vI ], where vI ∈ C (F(a, b)),
and I is equivalent to the identity vI = 0.

7 http://www.mat.savba.sk/∼hycko/oml.
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Proof: For a congruence ψ , the identity I holds in the quotient algebra F(a, b)/ψ
iff (x, y) ∈ ψ . The least congruence containing (x, y) is ϕI . Due to the finiteness
of F(a, b), the kernel of ϕI is a principal ideal. The greatest elements of kernels of
congruences in finite OMLs are always central (Proposition 2.4). �

The element vI from Proposition 3.2 is also computed by our program. If
we ask only of the validity of I , YES/NO answer is given and the value of vI is
available on request as an additional information. However, it plays an essential
role in tests of implications, as we shall show in the sequel.

The program presented in Megill and Pavičić (2001) does what was described
so far. Then it has been generalized in the direction particularly useful for the study
of quantum implications. Here we develop another generalization which allows
us to test more complex statements.

3.3. Tests of Implications

Let us now consider an implication between two identities.

Theorem 3.3. Let I, J be identities of formulas in variables a, b. Then the
following are equivalent:

(1) the implication I =⇒ J holds in all OMLs,
(2) ϕI ⊇ ϕJ ,
(3) vI ≥ vJ ,

where ϕI , ϕJ are the congruences and vI , vJ the central elements of F(a, b)
corresponding to I, J in the sense of Proposition 3.2.

Proof: Conditions (2) and (3) are obviously equivalent, we shall prove their
equivalence with (1).

Condition (1) holds in all OMLs iff J holds in all OMLs satisfying I . Then
the sub-OML G(a, b) generated by a, b is an image of the free OML FI (a, b)
with generators a, b satisfying I (thus a, b are not free generators of FI (a, b)).
The OML FI (a, b) is isomorphic to the quotient algebra F(a, b)/ϕI of the free
OML F(a, b) with two free generators. Thus if J holds in F(a, b)/ϕI , it holds also
in G (a, b) and in any OML satisfying I . We have obtained a sufficient condition
ϕI ⊇ ϕJ which is equivalent to vI ≥ vJ .

To prove the necessity, assume that vI �≥ vJ , i.e., ϕI �⊇ ϕJ . This means that J

does not hold in F(a, b)/ϕI . Then F(a, b)/ϕI itself is a counterexample on which
the implication I =⇒ J does not hold. The proof is complete. �

Theorem 3.3 allows us to test implications between identities.
A conjunction of identities I1, . . . , In is equivalent to a single identity.

Indeed, I1, . . . , In, may be expressed in the forms u1 = 0, . . . , un = 0, and
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their conjunction is equivalent to the identity u1 ∨ · · · ∨ un = 0. Thus our
tool allows to test conjunctions of OML identities in two variables and, by
Theorem 3.3, also implications between conjunctions of identities, i.e., of the
form (I1 AND · · · AND In) =⇒ (J1 AND · · · AND Jn). We go even further.

Note 3.4. We denote the classical logical conjunction and disjunction by AND
and OR in order to distinguish them from the lattice operations in OMLs.

Theorem 3.5. Let n ∈ N and let I1, . . . , In, J1, . . . , Jn be identities of formulas
in variables a, b. Then the following are equivalent:

(1) the conjunction of implications (I1 =⇒ J1) AND · · · AND (In =⇒ Jn)
holds in all OMLs,

(2) ∀i ∈ {1, . . . , n} : ϕIi
⊇ ϕJi

,
(3) ∀i ∈ {1, . . . , n} : vIi

≥ vJi
.

Proof: Again, conditions (2) and (3) are trivially equivalent and they are
sufficient for (1).

To prove the necessity, assume that ϕIi
�⊇ ϕJi

for some i. Then Ji does not
hold in F(a, b)/ϕIi

. Hence F(a, b)/ϕIi
itself is a counterexample on which the

implication Ii =⇒ Ji does not hold. �

As the equivalence is a conjunction of two implications, it can be tested
analogously:

Corollary 3.6. Let I, J be identities of formulas in variables a, b. Then the
following are equivalent:

(1) the equivalence I ⇐⇒ J holds in all OMLs,
(2) ϕI = ϕJ ,
(3) vI = vJ .

Corollary 3.7. Let n ∈ N and let I1, . . . , In, J be identities of formulas in vari-
ables a, b. Then the following are equivalent:

(1) the implication (I1 OR · · · OR In) =⇒ J holds in all OMLs,
(2) ∀i ∈ {1, . . . , n} : ϕIi

⊇ ϕJ ,
(3) ∀i ∈ {1, . . . , n} : vIi

≥ vJ .

Proof: From the classical logic, (I1 OR · · · OR In) =⇒ J is equivalent to the
conjunction of implications (I1 =⇒ J ) AND · · · AND (In =⇒ J ) and we apply
Theorem 3.5. �
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Thus we may allow a disjunction on the left-hand side of an implication. Due
to the distributivity of classical logical operations AND, OR, the latter corollary al-
lows also to test implications of the form P (I1, . . . , In) =⇒ J1 AND · · · AND Jn,
where P is any lattice polynomial (using AND, OR) whose entries are identities
in variables a, b. Obviously, also a conjunction of such implications can be tested
by this technique and it is accepted by our program. However, this method does
not allow to test general statements containing disjunctions and negations.

Example 3.8. Let us consider the disjunction I OR J , where I, J are the identities
a ∧ b = 0, a ∧ b′ = 0. Then vI = a ∧ b, vJ = a ∧ b′; the least (central) element
below vI , vJ is 0. However, I OR J does not hold.

3.4. Extension to Finite Products of F(a, b)

As the validity of identities is preserved by direct products, our tool can be ex-
tended to finite direct products of copies of F(a, b) by applying the same principle
to each copy of F(a, b) separately. This allows to make conclusions about general
OMLs only in case that some free OML can be expressed as such a product. This
is a very restrictive assumption. However, it is satisfied for a particular free ortho-
modular lattice, F(a, b, c1, . . . , cn), which has n + 2 generators a, b, c1, . . . , cn

such that each ci commutes with all other generators (the generators are not free).
In Navara (1997), it is shown that F(a, b, c1, . . . , cn) is isomorphic to the direct
product of 2n copies of F(a, b). Its operations and properties are defined compo-
nentwise. The element x is central in F(a, b, c1, . . . , cn) iff it is central in each
component F(a, b) in the direct product representation.

Our program allows to decide the validity of statements (restricted as in the
previous section) in F(a, b, c1, . . . , cn) for n ≤ 9. The results are applicable to
any OML formula in variables a, b, c1, . . . , cn in any OML in which {a, b} is the
only noncommuting pair among {a, b, c1, . . . , cn}. This allows to automatically
check, e.g., the Foulis–Holland theorem and many other results using more than
two variables.

Example 3.9. The following theorem is proved in Beran (1984, VII.7 Corollary
7.7): Let

•∨ , ∧• denote the operations of skew join and skew meet, x
•∨ y = (x ∧

y ′) ∨ y, x ∧• y = (x ∨ y ′) ∧ y. If c commutes with both a and b, then the following
conditions are equivalent:

(I ) a ∧ (c ∨ b) ≤ a
•∨ b,

(J ) a ∧• b ≤ a ∨ (c′ ∧ b),

(K) a ∧• (c
•∨ b) = (a ∧• c)

•∨ (a ∧• b) (distributivity of skew operations).

Our program allows to verify this theorem using a few lines of code. We may
check a conjunction of equivalences, e.g. (I ⇐⇒ J ) AND (J ⇐⇒ K), or use
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the standard cyclic implication method:

(I =⇒ J ) AND (J =⇒ K) AND (K =⇒ I ) .

4. CONCLUSION AND LIMITATIONS OF APPLICABILITY

Free orthomodular lattices with more than two free generators are infinite
Kalmbach (1983). Thus the possibility of further extension of our technique is
very limited. Focusing is usually used for at least three variables, but it also uses
an assumption on compatibility of the variables. While our technique allows just
one noncommuting pair, focusing admits many disjoint pairs of noncommuting
elements.

The simplest case in which focusing can be used and our technique is not
applicable is the following: Let us assume a formula in four variables, a1, b1, a2, b2,
such that the only noncommuting pairs are {a1, b1} and {a2, b2}. Then focusing
can be applied to any formula which does not contain orthocomplements. Our
technique is not applicable to the free OML F (a1, b1, a2, b2) with generators
a1, b1, a2, b2. The problem is not only that there are many factors in the direct
product decomposition of F (a1, b1, a2, b2); one of these factors is neither Boolean,
nor isomorphic to MO2, but much more complex.

On the other hand, our program admits to use orthocomplements arbitrarily.
For example, it allows to work with all formulas from the free OML F(a, b, c1)
(where c1 commutes with both a and b). This OML has 962 = 9216 elements.
The focusing technique admits only formulas without orthocomplements, in this
case 20 expressions. (These are the elements of the free bounded distributive
lattice with three free generators: 0, 1, and the 18 elements of the free dis-
tributive lattice with three free generators.) Orthocomplements of some variables
may be allowed provided that the same variable does not occur without the or-
thocomplementation; this gives eight possible choices of orthocomplements of
three variables and the total of at most 2 + 8 × 18 = 146 elements, much less
than the formulas accepted by our program. Thus these techniques are incom-
parable and they both may simplify the work with formulas and statements in
OMLs.
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